Reactive Interfaces:
Combining Events and Expressing Signals

Ragnar Mogk

Technische Universitat Darmstadt
mogk@cs.tu-darmstadt.de

ABSTRACT

There are numerous attempts to design interfaces and abstractions
for event handling in reactive applications. A common solution is
to provide a set of combinator functions to manipulate and compose
event streams, a technique originating from functional program-
ming. Rich combinator libraries are essentially a domain specific
language for common event operations. Another kind of interface
for reactive abstractions are signal expressions, a syntactical con-
struct to combine and transform signals — values that change over
time. Each existing library has developed its own set of interfaces
for reactive programming, often influenced by the interface of ear-
lier libraries, and the actual need to support specific case studies.

However, no systematization of the developed interfaces exists.
In this paper, we analyze the different interfaces provided by reac-
tive languages. We group operations into several categories which
relate to usages of reactive programming libraries, discuss how the
choice of features influences the expressiveness of the respective
library, and which implications interfaces have on the language im-
plementation.

Categories and Subject Descriptors
D.3.2 [Language Classifications]: Data-flow languages

General Terms
Languages, Design

Keywords

reactive programming, event-driven programming, programming
interfaces

1. INTRODUCTION

Reactive applications update their internal state and produce re-
sults in reaction to external events. This behavior addresses the
requirements of a wide range of domains, such as user interfaces,
Web servers, and sensor applications [22].

Traditionally, the main design issue when implementing reactive
applications has been to decouple the code that detects or triggers

the events, from the code that handles the events (i.e., to implement
the semantic model of an application independently from the user
interface). The Observer pattern [9] already achieves decoupling,
but simple observers lack desirable features like composing reac-
tions [7], so that complex reactions can be build from simpler ones.
The syntax used for composition should also make the semantics
and the control flow of the composition obvious and not hide them
behind boilerplate code or scatter them around different places of
the code — a problem caused by inversion of control [10]. Finally,
it is desirable to integrate well with existing features of the host
language, so programmers can use familiar tools as expected [23].

Today a wide range of libraries for reactive programming ex-
ist, which provide the features mentioned above, but have a dif-
ferent focus, expose custom interfaces and adopt different abstrac-
tions [24]. Examples of such libraries include FrTime [3], Fran [7],
Reactive Extensions [16], Flapjax [19], and REScala [23]. In sum-
mary, programmers exposed to a variety of different interfaces even
though the target problem is often very similar. Contextually, there
is little or no discussion in the research community regarding the
implications of these differences, and the relative pros and cons,
resulting in a lack of guidelines that may ameliorate design choices
for reactive programming interfaces.

In this paper, we analyze the interfaces for reactive program-
ming, introduce the commonalities among the available abstrac-
tions and interfaces, and discuss examples uses of interfaces in a
broad range of reactive applications, including the problems stated
above. We also consider runtime requirements of certain features.

In summary this paper makes the following contributions:

e We provide an overview of the base abstractions used by re-
active programming libraries.

e We describe the most common interfaces used by reactive
programming libraries.

o We discuss the usage of different kinds of interfaces as well
as their weaknesses.

The paper is structured as follows. Section 2 surveys common
interfaces for reactive programming. Section 3 discusses the impli-
cations of certain design choices. Section 4 summarizes and pro-
vides recommendations for reactive programming libraries. Sec-
tion 5 presents related work, and Section 6 concludes.

2. INTERFACE TAXONOMY

Existing libraries for reactive programming differ in the inter-
faces they provide. In this section, we identify three types of in-
terfaces common to reactive programming libraries, (1) combina-
tor libraries for observable event streams, (2) combinator libraries
for time-changing values (i.e., signals or behaviors) and (3) signal

EVENT
COMBINATORS

SIGNAL

ELM[4] COMBINATORS
Fran([7]

Flapjax[19]

Rx[16]
Bacon.js[1]

scala.react[17]

REScala[23]

SIGNAL
EXPRESSIONS

Figure 1: Reactive languages and interface abstractions.

expressions — a construct to allow derivation of new signals from
arbitrary expressions.

Figure 1 shows how existing reactive programming libraries po-
sition in this design space, and Figure 1 shows an overview of the
operations we present in this section.

Events Both Signals
Transform Fold Combine
Filter Change Flatten
Split Read

Merge

Select

Group

Table 1: Operations on events and signals.

2.1 Combinator Libraries for Events

An event (a.k.a. event stream or observable) is an abstraction for
a discrete-time occurrence — occurrences optionally carry a value.
Events are common in reactive programming and most libraries
dedicate many combinators to transform and compose events. For
each library in the design space in Figure 1, we first provide an ex-
ample for the use of combinator libraries for events, then illustrate
a categorization of the operations which combinator libraries can
support.

2.1.1 Example: Request Processing

The example in Figure 2 demonstrates the use of an event com-
binator library. A source event carrying external requests is tested
for valid authentication and processed into a result and send back
to the requester. We use Scala-like syntax in code examples — they
can be easily transferred to any concrete library as the concepts are
similar for all combinator libraries.

Common operations include transforming events by filtering oc-
currences with a predicate, such as the authorization status of the

def source: Event[Request]
val filtered = source.filter(isAuthorized)
val result = filtered.
map(calculateResultPart) .
zipWith(filtered.map(lookupResultPart))
(combineParts)
result.observe(sendResult)

Figure 2: Use of combinator libraries for events.

request (Line 2), and transforming values based on a given func-
tion, which compute part of the result from the request (Line 4).
More complex operations include merging multiple events. This
functionality is demonstrated in Line 5 of the example, where an-
other part of the result is looked up, and both parts are combined
by the zipWith combinator using the combineParts function.
It is also possible to react to an event with a side effect as an exit
point of the reactive library connecting to external interfaces, the
sendResult function in this case (Line 7).

The example also illustrates the use of combinator libraries as a
domain specific language, where the combinators in Lines 3-6 are
written in the order reflecting the control flow of the event transfor-
mation pipeline — a common syntax in reactive programming.

2.1.2 Operation Categories

Combinator libraries often provide a rich set of combinators, im-
plementing many operations. We group available operations into
categories, with each category providing distinct functionality for
events.

The simplest operations on events take a single input event and
produce a single derived event as an output. The categories differ
in how the occurrences of the resulting event are derived from the
occurrences of the input event.

Transform Applies a function to the value of the input event oc-
currence, and returns the result of the function application
as the new value of the derived event occurrence. The de-
rived event always occurs if the input event occurs. The map
combinator is an example of a transformation operation.

Filter Tests the value of the input event occurrence. The derived
event only occurs if the test is successful. The value of the
derived occurrence is the same as the input occurrence. Fig-
ure 2 shows the £ilter combinator.

Split Produces multiple event occurrences from a single one. The
derived event occurs multiple times in reaction to a single
occurrence of the input event. For example, the result in Fig-
ure 2 (Line 5) may be large, and split into multiple smaller
parts, each as its own occurrence of the derived event.

Most frameworks also support operations on multiple events. We
distinguish two distinct categories of combining events, and a sin-
gle category to produce multiple result events.

Merge Combines the values of multiple occurring input events
into a single result value. The derived event occurs only if all
input events occur and has the combined result as the value.
Merge generalizes Transform to multiple input events.

Select Selects one occurrences from multiple input events and re-
turn it as the occurrence of the derived event. Select general-
izes Filter to multiple input events.

Group Take a single input event and group occurrences into one
of multiple result events. An example would be an event
producing key value pairs, split into one derived event for
each key. The derived events occur with the value, when the
input event occurs with the corresponding key

Operations on events can belong to multiple categories, a sin-
gle operation could transform and filter an event at the same time.
Combined operations can be more natural to use and offer imple-
mentation benefits. For example, when combining Select and Split,
multiple occurrences of the input events can be selected and then
split into the single derived event, without requiring any intermedi-
ate data structures — improving code clarity and reducing overhead.

2.2 Combinator Libraries for Signals

Events alone are unsatisfactory when the application deals with
changing state. Consider an application which uses a temperature
sensor. Events are well suited to observe each temperature change
but if the current temperature value needs to be accessible anytime,
the application must store the temperature and update it upon event
occurrence. Time-changing values — such as the temperature — are
common in reactive systems and often connected with event occur-
rences. Many reactive programming libraries thus include a dedi-
cated abstraction called signal (or behavior) to model time chang-
ing values in addition to events.

We first provide an example how to create and use signals and
then take a systematic look at operations available in libraries with
signals and events.

2.2.1 Example: Request Statistics

A first way to create signals is to observe properties about the his-
tory of an event. Figure 3 shows an example where the number of
incoming request events is counted and stored as a signal (Line 8).
Every result is collected into a list of results (Line 9). Such derived
signals are automatically updated every time the input event occurs.

val requestCount: Signal[Int] = source.count()
val allResults: Signal[List[Result]] = result.list()

Figure 3: Transforming events to signals.

A snapshot of the current value of a signal can be accessed at
any time, which allows to use the value in a non reactive context.
However, a typical task is to derive a new value based on the snap-
shot, and it is often desirable that the derived value updates as a
reaction to changes of the input signal. For this purpose, a new
set of combinators can be used to derive new signals from exist-
ing ones. Figure 4 shows an example that derives the number of
results by counting the length of the result list (Line 10). Deriving
a value from multiple input signals is done with the lift combina-
tor (Line 12), which takes any number of signals and a function
with the same number of arguments, and derives a new signal by
applying the function to the values of the input signals whenever
one of them changes. In this case, we test whether the difference
between the number of request and sent results exceed a threshold.
The derived signal then contains the boolean result of the test.

val resultCount =

def threshold: Int

val exceedsThreshold = lift(requestCount, resultCount){
(reqC, resC) => reqC — resC > threshold

}

allResults.map(_.length)

Figure 4: Combinator libraries for signals.

2.2.2 Features for Signals and Events

In contrast to events, signals on their own do not support a di-
verse set of operations. Instead, signals are used to derive new
signals from multiple input signals, similar to the Merge operation
on events.

Combine Derives a new signal based on the value of one or mul-
tiple input signals.

Combining multiple signals is simpler than combining events, as
signals always have a valid value, where events may or may not
occur. Both map and 1ift in Figure 4 are examples for signal
combination.

There are three new operations to support combinations and con-
version between events and signals.

Fold Derives a signal from an event. The value of the result signal
changes on every event occurrences, by applying a function
to the old value of the signal and the value of the event occur-
rence. The operations folds the sequence of event occurrence
with the signal value as an accumulator. The count and
1ist combinators in Figure 3 are both examples of specific
fold operations.

Change Derives an event from a signal. The result event occurs
every time the signal changes to a different value. The value
of the occurrence contains the old and the new value of the
signal.

Read Any operation on events can, in addition to its normal in-
puts, also read the current values of any number of signals.
Examples for possible combination are transforming or fil-
tering events based on a signal value, or taking snapshots of
signal values when an event occurs.

2.3 Signal Expressions

Signal expressions are a syntactical construct for the Combine
operation on signals, the only operation to derive signals from other
signals stated in Section 2.2.2. While multiple signals can be com-
bined by lifting functions, the combination of signals is often very
specific — the lifted function is defined inline and only used once
for the purpose of the lifting. We first show an example of how
signal expressions better integrate into the host language, and then
show two advanced features which integrate very well with signal
expression syntax.

Figure 5 shows the previous threshold example, but uses signal
expressions instead of function lifting. A signal expression is an
expression which accesses the values of other signals (in this case
using function call syntax), and is wrapped in a Signal block to
indicate the scope. The resulting value of the expression is the value
of the newly generated signal, automatically updated upon changes
in the input signals.

val exceedsThreshold = Signal {
requestCount () — resultCount() > threshold
}

Figure 5: Basic signal expressions.

A major advantage of signal expressions is that they work with
all expressions of the host language including expressions involv-
ing complex control flow. Figure 6 shows an example of a signal
expression testing a signal as part of a condition. Notably, the value
of allResults is never accessed as long as exceedsThresh-
old () is false. The signals accessed inside a signal expression
can be dynamically detected by the runtime, and used to determine
when the derived signal needs to change.

val resultsIfThreshold = Signal {
if (exceedsThreshold()) allResults()
else Nil

}

Figure 6: Signal expressions with conditional access.

Dynamic detection allows the use of higher order signals — sig-
nals with other signals as part of their values — inside of signal
expressions. Figure 7 shows an example with a higher order sig-
nal (Line 2). The list of clients is wrapped in a signal, because

woR W =

clients may be added or removed. The name of each client is rep-
resented as a signal (Line 1), as it may also change. Making the
name of a client at a specific position available as a signal requires
nothing more than undoing the three nesting levels inside a sig-
nal expression. The derived signal depends on three signals, the
list of clients, the activelID, and the name of the accessed
client. Note that the accessed client can not be known statically, so
requires dynamic dependency discovery.

trait Client { val name: Signal[String] }

val clients: Signal[List[Client]]

val activeID: SignallInt]

val activeClientName: Signal[String]l = Signal {
clients().at(activeID()) .name ()

}

Figure 7: Accessing nested signals.

The use of higher order signals is enabled by the Flatten category
of operations, which are naturally supported by signal expressions

Flatten A signal can have other signals as part of its value. Inside
of a signal expression, the value of nested signals can be ac-
cessed, resulting in a dynamically selected dependency. The
resulting signal depends both on the inner as well as the outer
signal.

Note that combinators libraries can also support a flatten oper-
ation, and thus require dynamic dependency discovery. However,
flattening is very natural with signal expressions and needs to be
supported to make many syntactically valid expressions work.

Signal expressions also support all available operations that only
involve signals, so libraries which only support signals can opt to
have signal expressions as their only interface.

3. DISCUSSION

This section discusses advantages and disadvantages of the in-
terfaces presented in Section 2, and analyzes how specific design
choices of interfaces can influence the implementation of the run-
time. We first state the advantages of combinator libraries and why
they are often used for reactive programming libraries, and explain
the problem of combinator libraries becoming too large.

We then discuss signal expressions in detail, including why they
can solve the problem of large interfaces only for signals, but not
for events. We also detail design considerations for the syntax of
signal expressions. Lastly, we discuss selected semantics and per-
formance differences of reactive programming runtimes, which de-
pend on the chosen interfaces.

3.1 Advantages of Combinator Libraries

Nearly every library for reactive programming provides combi-
nators for events and signals. We find three major reasons for the
success of combinator libraries. (1) The concise and declarative
expression of chains of operations on reactive values, (2) the avail-
ability of combinator syntax in most general purpose languages,
and (3) the safe extensibility of libraries by adding new combina-
tors.

3.1.1 Data Pipelines

Combinator libraries are well suited to describe data pipelines,
where the data from a source is transformed multiple times by a
sequence of combinators, and then processed by a final sink op-
eration as demonstrated in Figure 2. The source code reflects the

pipeline operations in the same order as they are semantically ex-
ecuted, making it easy for a human reader to follow the program
control flow.

Data pipelines are common not only in reactive programming,
but also in traditional areas of programming languages, such as
collections, optional values, and future values. Rx describes ob-
servables (a variant of events) as a combination of a collection and
a future [21], filling a gap in the standard library of many program-
ming languages.

3.1.2 Availability

Combinator libraries are supported by most general purpose pro-
gramming languages independent of the underlying programming
paradigm. While combinator libraries originate in functional pro-
gramming, they only rely on the availability of higher order func-
tions.

Combinator libraries are actually a reason to include higher order
functions in a language. An example is Java and the Java stream
API [12], which leverages lambda expressions introduced to the
language at the same time [11] to enable a declarative and concise
syntax for stream pipelines, similar to the reactive pipelines of the
discussed in the previous section.

Availability in many languages allows for different reactive pro-
gramming libraries to share concepts and interfaces between li-
braries for different languages. A good example is the Rx family
of libraries [16], which has libraries available for many languages,
all sharing similar combinators. This also allows programmers to
learn libraries for reactive programming more quickly.

3.1.3 Extensibility

Combinator libraries are extensible for the author of the library.
New operations can be supported by adding more combinators to
a basic abstraction, without interfering with existing operations, or
requiring the programmer to learn new syntactic constructs. On the
other hand, it is also possible for a library to only implement a sub-
set of the operations for reactive programming listed in Section 2,
because combinators are independent of each other.

Extensibility is important for reactive programming libraries, as
many aspects of libraries are still under active research, and new
interactions with the library are required for external integration.

Adding more combinators also has disadvantages as discussed in
the next section.

3.2 Drawbacks of Combinator Libraries

Combinator libraries can grow quickly in the number of available
combinators, leading to large library surfaces complicating the use
of the library.

Each operation in a combinator library has to be expressed only
by using proper combinators. When no suitable combinator for
a given use case is available, there are essentially three options to
achieve the desired effect: (1) using multiple combinators, (2) using
a generic combinator and (3) falling back to a direct manipulation
of the library abstractions. We will first take a look at multiple and
generic combinators and then at direct manipulations.

3.2.1 Multiple or Generic Combinators

Figure 8 shows an example for implementing the count combi-
nator in Line 1 with multiple combinators (Line 2) or a generic
combinator (Line 3).

These solutions however imply loss in clarity, as programmers
need to figure out the interactions of multiple combinators, or what
exactly the specific instance of the generic combinator computes.

A second drawback is potential loss of performance when using

1
2
3

N U AW =

source.count ()
source.list() .map(_.length)
source.fold(0)((a, _) => a + 1)

Figure 8: Alternatives for count

multiple combinators, as each operator adds another layer of in-
direction. Even without indirection, a specialized combinator can
often improve performance over the generic version. For example,
the count combinator can completely ignore the value of the event
occurrence, while the £old combinator needs to unpack the value
and pass it to the function, where the value is then ignored.

This performance burden can be significant when the desired op-
eration is simple as in the example in Figure 8.

3.2.2 Direct Manipulation

Implementing the operation by directly manipulating the under-
lying abstraction is often the most complicated choice, but may be
necessary if there is no suitable combinator.! However, implement-
ing combinators directly requires knowledge about the internal in-
variants of the library, and is often only practical with modifications
to the source code of the library, unless the library provides an in-
terface for direct manipulations.> The concrete syntax for direct
manipulation of the library abstractions varies from library to li-
brary, a possible interface using subclasses is sketched in Figure 9,
where a count event is implemented which occurs with an increas-
ing count every time the input event occurs. In the example it is
assumed that events alway occur on a single thread and mutable
state can be safely used as a reaction to occurrences.

class Count extends DerivedEvent {
var counter = 0
def onInputOccurence() = {
counter += 1
occurWithValue(counter)
}
}

Figure 9: Sketch of a subclass based version of count

To avoid the aforementioned issues, libraries include a number
of combinators to cover all expected use cases. As a result they
expose very large interfaces, putting a burden on the user who has
to learn many different combinators. While it is possible to use only
the needed combinators without knowledge of the whole interface,
finding the necessary combinators often involves navigating large
parts of the library interface.

3.3 Signal Expressions

A significant advantage of signal expressions is to allow arbi-
trary combinations and transformations of signal values, as a signal
expressions allows to use normal host language expressions with-
out restrictions, and adds the possibility to access signal values. A
signal always has a value, so combining two signals has the trivial
semantics of using the current value of each signal.

This design does not require a rich set of combinators as opera-
tions on signals are expressed in familiar syntax. As a result, signal

'RxJava has no combinator to provide a running count which oc-
curs every time the count increases, it only provides a combinator
which produces a count after the counted event signals that it will
not occur any more.

*REScala requires the use of private methods to access event and
signal values, which are not normally available to user code, so
direct manipulation of library abstractions is not possible.

W -

expressions do not suffer from the problem of large interfaces dis-
cussed previously.

When it comes to discrete change occurrences, signal expres-
sions show a number of limitations. An event may or may not oc-
cur. Just combining and transforming the values of occurrences is
not as expressive as it is for signals. For events, sometimes it is
needed that all involved events occur (such as a zip operation),
which could be handled with a corresponding event expression.
Other operations require only some of the events to not occur (i.e.,
computing an average of just the occurring event values).

An event can be seen as a signal with an optional value, which
allows the event to be embedded into a signal expression. However,
the signal expression has to deal with these optional values, bloat-
ing the expression with additional statements, thus removing the
advantages of signal expressions compared to combinator libraries.

3.3.1 Dependency Discovery Scope

Section 2.3 shows signal expressions dynamically detect the set
of accessed signals. This approach implies that dependencies are
not only detected inside the static scope of the signal expression,
but also in the dynamic scope of the signal expression. Figure 10
shows an example where a signal is accessed outside the static
scope of a signal expression (Line 2), but the execution happens
inside the dynamic scope (Line 3). Dynamic scoping has the risk
of adding unwanted dependencies to the signal expression, so it is
desirable to disallow access to signals outside of the static scope of
signal expressions.

def source: Signal[Int]
def add(i: Int): String = source() + i
val results = Signal { add(5) }

Figure 10: Signals in the dynamic scope of a signal expression.

Note that confining signal access does not limit the possibility to
access signals dynamically. Signals can still be selected dynami-
cally (even outside the static scope of the signal expression), only
the final access to the value of the signal has to happen inside the
static scope.

3.3.2 Implicit Value Access

Signal expressions require to explicitly extract the values of the
signals used inside the expression. Bainomugisha et al. [2] refer to
this approach as manual lifting in contrast to implicit lifting where
the value of a signal is extracted without additional syntax. Fig-
ure 11 shows the threshold example with implicit lifting.

val exceedsThreshold = Signal {
requestCount — resultCount > threshold
}
val text = Signal { exceedsThreshold.toString() }

Figure 11: Implicit signal value access.

Implicit lifting reduces syntactic noise and makes the content of
the signal expression look just like a normal expression. However,
this solution exhibits two major disadvantages.

First, similar to the issue discussed in Section 3.3.1, it becomes
harder for a reader to spot the use of signals. This problem is
demonstrated in Figure 11 Line 14, where it is impossible to know
which of the three used values are signals without looking at the
type of the used variables.

Second, the code can become ambiguous when a value supports
the same operation as a signal. For example, the receiver of the call
to toString in Line 16 is ambiguous, it could refer to the signal

abstraction itself, or the contained value — the programmer has no
way to specify the desired behavior.

3.4 Synchronicity

The operations on events and signals described in Section 2 are
supported by multiple frameworks but their underlying abstractions
have different semantics, resulting in similar combinators from dif-
ferent libraries having subtle semantic differences.

Consider the merging operator zipWith in figure 2. The ba-
sic idea is to take two event occurrences and combine them into a
single occurrence. However, different libraries have different se-
mantics for what it means for two events to occur simultaneously.
One possibility of zipWith semantics is to accept only events oc-
curring at the same time, that is, if the event occurrence is derived,
possibly transitively, from one occurrence of a common shared in-
put event. Another option is to wait without blocking until both
events have at least one occurrence to trigger the composed event,
in this case, the occurrences do not need to share a common transi-
tive input.

The underlying difference between the two interpretations of zip—

With lies in the way reactions are interpreted. In the first case,
the reactions to the external change are considered to happen syn-
chronous, all at the same time, and only events occurring together
at the same time can be combined. The semantics of any operation
combining multiple events are fixed, resulting in more predictable
reactions to changes.

In the second case, there are several asynchronous reactions to
external changes, where each event is handled individually occur-
ring at independent times depending on the underlying implemen-
tation. The timing semantics of event combination are defined in-
dividually by each operation, leading to more flexible semantics at
the cost of predictability.

3.5 Runtime Performance Implications

Signal expression require dynamic dependencies to correctly sup-
port language features like conditionals. Dynamic dependencies
require a runtime which can discover the dependencies used during
the evaluation of a signal expression. Also, the runtime needs the
ability to dynamically add and remove dependencies to and from a
derived signal.

This dynamic discovery process can add significant overhead to
signals with cheap computations. If the runtime manages a graph
of the dependencies between signals, then each potentially dynamic
access needs to be intercepted and the graph changed accordingly.
For push based change propagation, a dynamically detected de-
pendency can also cause unnecessary computations, if the changes
are not yet propagated to the new dependency. On the other hand,
for expensive computations dropping a dependency while it is not
needed can have significant reductions in computation cost.

Note that combinator libraries do not suffer from these issues be-
cause they do not provide dynamic discovery of dependencies for
most combinators. Fortunately, a runtime can support dynamic dis-
covery and only pay the price when it is used by signal expressions,
but not when combinators with static dependencies are used.

In principle, static code analysis could be used to detect the use
of signals inside of signal expressions to remove the overhead of
dynamic checks in case all accessed signals are known in advance.
To our knowledge static analysis has not yet been explored in the
context of signal expressions.

4. SUMMARY AND OUTLOOK

Combinator libraries provide a concise way to define a transfor-
mation pipeline for events. However, to support all desired func-

tionalities, interfaces become large and harder to learn and under-
stand. Signal expression solve the problem of large interfaces for
signals, but are unsatisfactory for all the operations required by
events and signals. Especially for pipelines of events, combinators
provide a well-suited syntax, which is also shared by other libraries
for similar data pipelines (e.g., collection or stream processing li-
braries).

Reactive programming libraries thus can and should support both
combinators and signal expressions, but keep the set of combina-
tors focused on the core tasks of the library. Still, it needs to be
easy for the user to learn available combinators. Libraries should
avoid having combinators with surprising semantics — combinators
should feel similar to another. A user should be able to predict the
semantics of an unknown combinator based on known combinators.
If different semantics are necessary it may be better to introduce a
completely separate interface, for example by introducing a new
abstraction with its own set of combinators.

To facilitate interactions not provided by the included combina-
tors, the library should provide a safe way to directly manipulate
the basic abstractions. We believe that there is still research needed
on how a library can achieve exposing a flexible enough interface,
without giving the user the ability to break properties guaranteed
and managed by the library. In the context of direct manipulations,
a more complex version of signal expressions, which also allows
to specify the different operations on events may be suitable, as
such an interface might be expressive enough while still requiring
less boilerplate code than implementing a library extension (c.f.,
Figure 9).

5. RELATED WORK

Bainomugisha et al. [2] provide a comprehensive survey on re-
active programming languages, with a focus on implementation
model and features supported by the individual implementations.

Fran [7] is one of the early libraries to support both events and
signals (or behaviors, as signals are called in Fran). Fran is imple-
mented in Haskell, and combinators are used as the library inter-
face. The target domain of Fran are animations, so signal values
are sampled continuously to produce an image output. The rep-
resentation of a signal in Fran reflects the sampling behavior, and
conceptually corresponds to a function from the current time to the
signal value, but needs to be more complex because of technical
details [6]. In the context of pure functional programming, Ar-
rowized FRP [20] provides a different interface, where functions
to transform signals are manipulated instead of the signals them-
selves. Arrowized FRP allows for efficient implementations of re-
active frameworks in languages where referential transparency is
required.

The abstractions adopted in Fran influenced many newer ap-
proaches to reactive programming in other languages. FrTime [3]
is one influenced library implementing reactive programming in
Scheme. FrTime uses Schemes macro system to provide automatic
lifting of functions, which makes the use of signals transparent to
the programmer. Flapjax [19] implements reactive programming
for Javascript, eliminating the need for callbacks in common event
driven Javascript applications. Flapjax provides a templating mech-
anism to embed signals as part of the displayed HTML. Another
approach influenced by functional reactive programming is Reac-
tive Extensions [16], a library to improve integration of event han-
dling in mainstream applications, which uses the convenient syntax
combinators provide for event pipelines.

More recent advances in reactive programming often focus on
the language runtime. Elliott et al. [8] propose a push based propa-
gation of updates for Fran to reduce unnecessary recomputations of

signals compared to the continuous sampling. ELM [4] prohibits
the use of dynamic signals to allow pipelined execution of a push
based update propagation. The execution strategy of ELM allows
the integration of non blocking execution of long running tasks into
signals. Scala.React [17] integrates with thread pools of external 1i-
braries, and also introduces a domain specific language to combine
temporal sequences of event occurrences. Reactive programming
has been also extended to distributed applications [5, 18]. In the
distributed context, a major issue is to provide a an algorithm for
propagating updates without the need for central coordination.

Another recent line of research uses advanced type systems to
guarantee runtime properties such as bounded-space execution [15],
absence of space and time leaks [14] and liveness [13].

6. CONCLUSION

In this paper, we analyzed existing designs for reactive program-

ming languages. Combinator libraries are a common interface choice.

We argued about their flexibility and support for diverse operations
but also showed the drawback of a large and possibly hard to learn
surface area of available combinators. We discussed signal expres-
sions, a syntactic improvement to make combinations and transfor-
mations of signals more natural. We show the use cases of signal
expressions — combination of many signal values used almost iden-
tical to regular values in expressions of the host language.

Finally we recommended that libraries should focus on a small
set of important combinators, and provide an extension interface to
allow for arbitrary interactions for when the provided combinators
are insufficient.

7. ACKNOWLEDGEMENTS

This work has been funded by the LOEWE initiative (Hessen,
Germany) within the NICER project, and partially supported by
the European Research Council, grant No. 321217.

8. REFERENCES

[1] Bacon]S website. https://baconjs.github.io/.

[2] E. Bainomugisha, A. L. Carreton, T. v. Cutsem,

S. Mostinckx, and W. d. Meuter. A survey on reactive
programming. ACM Comput. Surv., 45(4):52:1-52:34, Aug.
2013.

[3] G. H. Cooper and S. Krishnamurthi. Embedding dynamic
dataflow in a call-by-value language. In ESOP, pages
294-308, 2006.

[4] E. Czaplicki and S. Chong. Asynchronous functional reactive
programming for GUIs. PLDI ’13, pages 411-422. ACM,
2013.

[5] J. Drechsler, G. Salvaneschi, R. Mogk, and M. Mezini.
Distributed REScala: An update algorithm for distributed
reactive programming. OOPSLA ’14, pages 361-376, New
York, NY, USA, 2014. ACM.

[6] C. Elliott. Functional implementations of continuous
modeled animation. PLILP *98/ALP *98, pages 284-299.
Springer-Verlag, 1998.

[7] C. Elliott and P. Hudak. Functional reactive animation. ICFP
’97, pages 263-273. ACM, 1997.

[8] C. M. Elliott. Push-pull functional reactive programming. In
Proceedings of the 2nd ACM SIGPLAN symposium on
Haskell, pages 25-36. ACM, 2009.

[9] Gamma, Helm, Johnson, and Vlissides. Design Patterns
Elements of Reusable Object-Oriented Software.
Addison-Wesley, 2000.

[10]

(11]

[12]

[13]

[14]

[15]

[16]
(17]

(18]

(19]

[20]

[21]
[22]

(23]

[24]

[25]

P. Haller and M. Odersky. Event-based programming without
inversion of control. volume 4228 of Lecture Notes in
Computer Science, pages 4-22. Springer Berlin Heidelberg,
2006.

JSR 335: Lambda expressions for the Java programming
language. https://jcp.org/en/jsr/detail 7id=335.

Java stream API documentation.
https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-
summary.html.

A. Jeffrey. Functional reactive programming with liveness
guarantees. ICFP 13, pages 233-244. ACM, 2013.

N. R. Krishnaswami. Higher-order functional reactive
programming without spacetime leaks. ICFP *13, pages
221-232. ACM, 2013.

N. R. Krishnaswami, N. Benton, and J. Hoffmann.
Higher-order functional reactive programming in bounded
space. POPL 12, pages 45-58, 2012.

J. Liberty and P. Betts. Programming Reactive Extensions
and LINQ. Apress, Berkely, CA, USA, Ist edition, 2011.

I. Maier and M. Odersky. Deprecating the Observer Pattern
with Scala.react. Technical report, 2012.

A. Margara and G. Salvaneschi. We have a DREAM:
Distributed reactive programming with consistency
guarantees. DEBS °14, pages 142-153. ACM, 2014.

L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper,

M. Greenberg, A. Bromfield, and S. Krishnamurthi. Flapjax:
a programming language for Ajax applications. OOPSLA
’09, pages 1-20.

H. Nilsson, A. Courtney, and J. Peterson. Functional reactive
programming, continued. Haskell 02, pages 51-64. ACM,
2002.

Rx introduction. http://reactivex.io/intro.html.

G. Salvaneschi, P. Eugster, and M. Mezini. Programming
with Implicit Flows. Software, IEEE, 31(5):52-59, Sept
2014.

G. Salvaneschi, G. Hintz, and M. Mezini. REScala: Bridging
between object-oriented and functional style in reactive
applications. AOSD ’14, 2014.

G. Salvaneschi and M. Mezini. Reactive behavior in
object-oriented applications: an analysis and a research
roadmap. AOSD 13, pages 37-48, 2013.

Scala.rx Web site. https://github.com/lihaoyi/scala.rx.

	Introduction
	Interface Taxonomy
	Combinator Libraries for Events
	Example: Request Processing
	Operation Categories

	Combinator Libraries for Signals
	Example: Request Statistics
	Features for Signals and Events

	Signal Expressions

	Discussion
	Advantages of Combinator Libraries
	Data Pipelines
	Availability
	Extensibility

	Drawbacks of Combinator Libraries
	Multiple or Generic Combinators
	Direct Manipulation

	Signal Expressions
	Dependency Discovery Scope
	Implicit Value Access

	Synchronicity
	Runtime Performance Implications

	Summary and Outlook
	Related Work
	Conclusion
	Acknowledgements
	References

